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Novel Agents and Immunotherapies for Primary Diffuse 
Large B-Cell Lymphoma of the Central Nervous  

System: Innovating for Impact in a Disease  
With Unmet Needs

Tatyana Gavrilova

Abstract

Primary diffuse large B-cell lymphoma of the central nervous sys-
tem (CNS-DLBCL), the most prevalent subtype of primary CNS 
lymphoma (PCNSL), is a highly aggressive extranodal non-Hodgkin 
lymphoma (NHL) that arises in the brain, spinal cord, leptomeninges, 
and orbits. Systemic methotrexate-based chemoimmunotherapy regi-
mens, followed by consolidative autologous stem cell transplantation 
(ASCT), are the standard treatments for newly diagnosed PCNSL. A 
considerable number of patients with PCNSL, however, are medically 
frail and possess multiple comorbidities, which render them unsuitable 
for these intensive treatments. Furthermore, a substantial proportion of 
those who undergo treatment still face the challenge of disease recur-
rence. There is no universally accepted treatment for relapsed disease, 
particularly for patients who are unable to tolerate systemic chemother-
apy, and participation in clinical trials is encouraged. There is a notable 
treatment gap in PCNSL, underscoring an urgent need to investigate 
novel agents and immunotherapies that could potentially offer supe-
rior tolerability and efficacy profiles. Emerging therapies could play a 
pivotal role in expanding the therapeutic landscape and addressing the 
limitations inherent in current treatments. This review examines the on-
cogenesis of PCNSL, highlighting its reliance on chronic active B-cell 
receptor (BCR) and nuclear factor-kappa B (NF-κB) signaling path-
ways, mechanisms of immune evasion, and characteristics of its immu-
nosuppressive tumor microenvironment (TME), which have facilitated 
the exploration of methotrexate-free targeted therapies for this disease.

Keywords: Primary CNS lymphoma; BTK inhibitors; Immunomod-
ulatory drugs; Immunotherapy

Introduction

Primary large B-cell lymphoma of immune-privileged sites 

(IP-LBCL) encompasses a category of highly aggressive ex-
tranodal non-Hodgkin lymphomas (NHL) that originate in the 
central nervous system (CNS), vitreoretinal compartment, and 
testes of immunocompetent individuals [1]. When IP-LBCL 
is confined to the CNS, it is clinically termed primary cen-
tral nervous system lymphoma (PCNSL). Diffuse large B-cell 
lymphoma of the CNS (CNS-DLBCL) is the most prevalent 
subtype of PCNSL [2]. PCNSL accounts for approximately 
4% of all primary brain tumors and its incidence increases with 
age, peaking in individuals over 65 years [3]. The treatment 
options for PCNSL are limited. Broad consensus exists to in-
clude high-dose methotrexate (HD-MTX) as the backbone of 
polychemotherapy induction regimens [4]. Consolidative ther-
apies include high-dose chemotherapy and autologous stem 
cell transplantation (ASCT) or, for less medically fit patients, 
whole-brain radiotherapy (WBRT) [5]. For patients over 60 
years of age, WBRT is generally not advised due to the poten-
tial for severe neurotoxic side effects, and cytarabine (Ara-C) 
is often chosen as the consolidation therapy, provided it was 
not utilized during the induction phase [6].

PCNSL has a poor prognosis, with a survival rate of two 
months if left untreated [7]. MTX-based chemotherapy extend-
ed the median overall survival (OS) to 30 - 60 months [8]. Al-
though a complete response (CR) and progression-free survival 
(PFS) of approximately 50% can be achieved for individuals 
who can complete treatment with a regimen such as MATRix 
(HD-MTX, cytarabine, thiotepa, rituximab), followed by con-
solidation with ASCT or WBRT [9], a substantial portion of pa-
tients still experience relapse of PCNSL. The median OS for 
those with relapsed disease is six months. While most relapses 
generally occur within the first two years of diagnosis, relapse 
can occur after 10 years [10]. Since there is an absence of a uni-
versally accepted standard treatment for relapsed or refractory 
(R/R) disease, it is recommended that patients enroll in clinical 
trials. This review discusses how the improved understanding of 
the cell-of-origin (COO) of PCNSL, its oncogenic reliance on 
chronic active B-cell receptor (BCR) and nuclear factor-kappa 
B (NF-κB) signaling, mechanisms of immune evasion, and its 
immunosuppressive tumor microenvironment (TME) has cre-
ated the opportunity to study targeted therapies for PCNSL. 
Although these agents are mostly studied in R/R disease, the 
unique biology of PCNSL lends itself to the potential of these 
drugs being investigated in the frontline setting.
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PCNSL Pathophysiology

Cell-of-origin (COO)

PCNSL is of activated B-cell (ABC) origin, frequently nega-
tive for CD10, although CD10 is detectable in 10-20% of 
cases [11], and positive for interferon regulatory factor 4 
(IRF4)/multiple myeloma oncogene 1 (MUM1) [12]. These 
cells, derived from the post-germinal center (GC), have B-
cell marker expression of CD19, CD20, CD79a and CD79b 
[13]. Gene expression profiling confirms that PCNSL shares 
key features with the MYD88/CD79B-mutated (MCD) ge-
netic subtype of DLBCL, marked by chronic active BCR 
signaling and inactivating mutations in genes encoding class 
1 and 2 human leukocyte antigens (HLA) [14]. Gain-of-func-
tion mutations in genes encoding the myeloid differentiation 
primary response 88 (MYD88), which functions as an adap-
tor protein for toll-like receptor (TLR) signaling pathways, 
and the BCR subunit CD79B, are frequently observed mu-
tations across MCD-DLBCL. A hallmark feature of MCD-
DLBCL is the constitutive activation of the downstream gene 
expression regulator NF-κB [15]. These characteristics of the 
MCD genetic subtype of DLBCL are especially prevalent in 
PCNSL [16].

The MYD88, TLR9, and BCR (My-T-BCR) complex co-
localizes with mammalian target of rapamycin (mTOR) and 
drives constitutive NF-κB signaling, which results in expres-
sion of anti-apoptotic and pro-proliferation genes that are key 
to the survival of PCNSL cells [17]. Bruton’s tyrosine kinase 
(BTK) serves as a critical intermediary linking the BCR and 
TLR pathways to NF-κB, thereby positioning this protein as 
a potential therapeutic target in PCNSL. Recognition of self-
antigens is another factor that drives persistent activation of 
BCR, and the oncogenesis of MCD-DLBCL and PCNSL [18]. 
B cells in PCNSL display rearranged and heavily somatically 
mutated immunoglobulin genes with a limited repertoire of 
immunoglobulin heavy chain genes, suggesting an antigen-
driven component in chronic BCR activation [19]. Among the 
neuron-derived proteins recognized by BCRs in PCNSL are 
the physiologically expressed GRINL1A, ADAP2, galectin-3, 
and BAIAP2 [20]. This implies that resident CNS cell popula-
tions act as antigenic stimuli for clonal B cells in PCNSL. A 
proof-of-concept study identified post-translationally modified 
CNS autoantigens as drivers of chronic antigenic stimulation 
in PCNSL. Atypically hyper-N-glycosylated sterile α-motif 
domain containing protein 14 (SAMD14) and neural tissue-
specific F-actin-binding protein I (neurabin-I) were identified 
as autoantigen targets of eight out of 12 BCRs in PCNSL [21].

Tumor microenvironment (TME)

The TME is composed of a tumor’s ecosystem that consists of 
immune cells, fibroblasts, extracellular matrix, cytokines, and 
growth factors which either promote or inhibit tumor growth 
[22]. In the case of PCNSL, the TME is skewed toward being 
immunosuppressive, thereby restricting the function of im-

mune surveillance cells. Specifically, there is a reduction in the 
presentation of cancer antigens to T cells through the suppres-
sion of major histocompatibility complex (MHC) expression 
on antigen-presenting cells, and an inhibition of cytotoxic T-
cell activity through the amplification of chromosome 9p24.1, 
which encodes the inhibitory programmed death-ligand pro-
teins PD-L1 and PD-L2 on resident cells within the TME [23]. 
The presence of M2 macrophages, which recruit IL-10-secret-
ing regulatory T cells (Tregs) and myeloid-derived suppressor 
cells (MDSCs), further promote an immunosuppressive TME 
[24]. Immune checkpoint inhibitors (ICIs), therefore, hold the 
potential to counteract these immunosuppressive properties. 
A significant challenge in PCNSL, however, is the described 
heterogeneity in immune checkpoint expression. The reported 
frequency of PD-L1 expression in PCNSL tissue is highly var-
iable, ranging from 4.1% to 97% [25]. Moreover, the TME is 
a dynamic system, subject to remodeling based on the tumor 
stage, surrounding cellular composition, and signaling milieu, 
thereby potentially limiting the impact of ICIs in PCNSL [26].

Treatment of PCNSL

Current frontline treatment of PCNSL

While anthracycline-based chemotherapy is fundamental to 
curative treatment for systemic DLBCL, it has significantly 
reduced efficacy in PCNSL and this is partly attributable to the 
chemotherapy’s inability to consistently penetrate the blood-
brain barrier (BBB), resulting in low CNS bioavailability of 
the drug [27]. Chemotherapies that incorporate HD-MTX, an 
agent that reliably crosses the BBB, are the frontline treatments 
for PCNSL, but these therapies are associated with significant 
toxicities that limit their use in the medically frail. MTX-based 
chemotherapy regimens also incorporate rituximab, the anti-
CD20 monoclonal antibody. Examples of such regimens are 
MATRix [28], MTR (HD-MTX, temozolomide, rituximab) 
[29], and R-MVP (rituximab, HD-MTX, vincristine and pro-
carbazine) [30]. Successful induction with these chemoimmu-
notherapy regimens still requires consolidation with high-dose 
chemotherapy and ASCT that is typically suitable for younger 
and medically fit patients. There is currently no standard thera-
py for relapsed PCNSL, and patients with relapsed disease are 
encouraged to participate in clinical trials.

Limitations of systemic chemoimmunotherapy

The addition of rituximab to chemotherapy has transformed 
the treatment landscape of systemic B-cell lymphoma, but its 
benefit in PCNSL is still unclear [31]. Rituximab has limit-
ed CNS permeability, with CSF concentrations ranging from 
0.1% to 4% of its serum concentration, possibly in part due to 
its large molecular weight of 145 kDa [32]. While retrospec-
tive studies have suggested improved outcomes with the addi-
tion of rituximab to chemotherapy in PCNSL [33-35], results 
of prospective trials investigating the efficacy of rituximab in 
PCNSL have been conflicting. The largest randomized con-
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trolled trials to date, the HOVON 105/ALLG NHL 24 [36] and 
the IELSG32 [28], have shown conflicting results regarding 
the clinical efficacy of rituximab in the treatment of PCNSL 
(Tables 1 and 2) [28, 36-44].

Subsequent to induction, patients are advised to undergo 
high-dose chemotherapy followed by ASCT. WBRT (45 Gy) 
is considered for patients who are not candidates for ASCT, 
although this therapy poses a substantial risk of neurotoxic-
ity [45]. Reduced-dose (approximately 25 Gy) WBRT as con-
solidation for MTX-based induction chemotherapy has also 
demonstrated a role in inducing responses in PCNSL, but with 
less associated neurotoxicity [46]. The limitations inherent in 
current frontline treatments for PCNSL, along with the lack of 
standardized therapies for R/R disease, present an opportunity 
to investigate targeted agents for PCNSL.

BTK inhibitors (BTKi)

The role of BTK as an intermediary in the signaling pathway 
between BCR and NF-κB is the rationale for the investiga-
tion of BTKi in PCNSL [12, 47]. Ibrutinib is a first-in-class 
BTKi. The pharmacokinetics of ibrutinib and its ability to 
cross the BBB have been investigated and, when corrected for 
protein binding of 97%, the CSF to plasma ratio was reported 
to be 28.7%, indicating that a significant portion of the free 
drug penetrates the BBB [37]. While ibrutinib demonstrated 
clinically effective concentrations in the CSF and inhibition of 
chronic active BCR signaling, the duration of response to ibru-
tinib as a monotherapy is brief [37]. Grommes et al reported 
findings from a phase 1 study of ibrutinib monotherapy in 13 
patients with R/R PCNSL. Clinical responses were observed 
in 10 of the 12 evaluable patients, with five achieving CR. The 
median PFS with single agent ibrutinib was 4.6 months, and 
the median OS was 15 months [38]. Soussain et al reported 
comparable survival outcomes of a phase 2 trial of ibrutinib 
monotherapy in patients with R/R PCNSL and primary vit-
reoretinal lymphoma, with PFS and OS rates of 4.8 and 19.2 
months, respectively. Two patients experienced pulmonary as-
pergillosis, one with a fatal outcome [39]. A second-generation 
BTKi has also been investigated in PCNSL. A phase 1/2 study 
of tirabrutinib in 44 patients with R/R PCNSL demonstrated an 
overall response rate (ORR) of 64%. However, with a median 
PFS of 2.9 months, the response duration with this newer gen-
eration BTKi remains limited [40].

The incorporation of ibrutinib into an anthracycline-based 
chemotherapy regimen, as reported by Lionakis et al, resulted in 
more sustained remissions [37]. This was demonstrated by a phase 
1b study of 18 patients with R/R PCNSL treated with dose-adjusted 
temozolomide, etoposide, liposomal doxorubicin, dexamethasone, 
ibrutinib, and rituximab (DA-TEDDi-R). Among the 14 evaluable 
patients of whom 12 (86%) achieved either a CR or a complete 
response unconfirmed (CRu), the median PFS was 15 months and 
a median OS was not reached, with 51% of patients alive at 1 year. 
Increased incidence of aspergillosis was noted with this regimen 
(Tables 1 and 2) [37-44].

Orelabrutinib is an irreversible second-generation BTKi 
that has greater bioavailability and fewer adverse effects than 
ibrutinib [48]. A retrospective study evaluated the efficacy 

of orelabrutinib (150 mg/day) and rituximab (250 mg/m2 per 
week) (RO cohort), versus orelabrutinib alone (100 mg twice a 
day) (OB cohort) and ibrutinib alone (560 mg/day) (IB cohort) 
among patients with R/R PCNSL. The ORR was higher for 
patients in the RO cohort than in the IB cohort, and the PFS 
and OS rates were higher in the RO and OB cohorts versus the 
IB cohort [49].

Resistance to BTKi presents a substantial challenge in BT-
Ki-based therapy. Suggested mechanisms of resistance are mu-
tations at the BTK binding site [50], regulation of BCR signal-
ing downstream of BTK via CARD11, TNFAIP3, KLHL14, and 
PIM1 [51], mutations in the chemokine CXCR4 receptor [52], 
compensatory overexpression of CD79B, overactivation of the 
PI3K/mTOR, p38 mitogen-activated protein kinase (MAPK) 
[53] and TLR/MYD88 pathways [54]. Agents that target these 
compensatory pathways are of interest in the treatment of PC-
NSL. IRAK-4, a critical downstream component of the TLR/
MYD88 pathway, is one such target. Emavusertib, an IRAK-4 
inhibitor, has demonstrated a 68% improvement in median sur-
vival in PCNSL xenograft models [55] and is currently under 
investigation in a phase 1/2 trial for R/R PCNSL (Table 3).

Immunomodulatory drugs (IMiDs)

Lenalidomide and pomalidomide are second- and third-gen-
eration agents that bind cereblon (CRBN), a protein that is a 
component of the E3 ubiquitin ligase complex. These drugs 
exert pleiotropic antitumor effects via immunomodulatory, 
antiangiogenic, and direct apoptotic properties. The cytotoxic 
effects of IMiDs are mediated through the suppression of IRF4 
expression with the subsequent downregulation of the pro-sur-
vival NF-kB signaling via a feedback loop in the chronically 
activated B cells of PCNSL [56], as well as the modulation 
the PI3K pathway, which results in anti-angiogenic effects 
[57]. IMiDs reduce the expression of the anti-apoptotic protein 
BCL-2, enhance natural killer (NK)-cell function, and promote 
T-cell proliferation and cytokine production [58]. Addition-
ally, IMiDs influence the macrophages within the TME, with 
pomalidomide demonstrating the capacity to shift macrophage 
polarization from the pro-tumor M2 to the anti-tumor M1 phe-
notype and to functionally enhance the phagocytic activity of 
macrophages [59]. Notably, both agents have shown the ability 
to penetrate the BBB [41].

Lenalidomide has demonstrated clinical efficacy in R/R 
PCNSL; however, it has not resulted in sustained therapeutic 
responses [60, 61]. The phase 1 study of pomalidomide and 
dexamethasone in R/R PCNSL demonstrated an ORR of 48% 
(12 of 25 evaluable patients), CR/CRu of 32% (8/25), with a 
median PFS for responders of 9 months [41].

IMiD-based combination therapies for PCNSL have been 
investigated as well, although without significant improve-
ment in response outcomes. Ghesquieres et al reported find-
ings of a prospective phase 2 study evaluating the combination 
of lenalidomide and rituximab. The induction treatment con-
sisted of eight 28-day cycles of rituximab 375 mg/m2 on the 
first day of the cycle and lenalidomide 20 mg daily, followed 
by a 12-month maintenance phase of lenalidomide 10 mg daily 
in responders. The study reported an ORR of 36% (16/45 sub-
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jects), with 13 of the responding 16 patients having achieved 
CR/CRu. The median PFS was 7.8 months, and the median OS 
was 17.7 months [42]. A case series by the French LOC net-
work evaluated the efficacy of combination rituximab, lena-
lidomide, and ibrutinib in R/R PCNSL. Among the 14 patients 
who received this combination treatment, CR was achieved in 
29% (4/14) with a median time to CR of 1.25 months. The 
1-year PFS and OS rates were 40% and 53%, respectively. Al-
though most patients did not achieve durable remissions, this 
therapy served as a bridge for three of the patients to receive 
consolidative treatment with ASCT, WBRT, and chimeric an-
tigen receptor (CAR) T-cell therapy [62]. The clinical efficacy 
of IMiDs in chemotherapy-free treatment regimens continues 
to be investigated (Table 3).

Immune checkpoint inhibitors (ICIs)

The enrichment in chromosome 9p24.1 copy number altera-
tions in cells of PCNSL, resulting in the increased expression 
of the PD-L1 and PD-L2 genes, has informed the investigation 
of ICIs, agents that block interactions between PD-L1/PD-L2 
and their corresponding receptors, PD-1/PD-2, in the treatment 
of PCNSL. While promising as a potential therapy, most of 
the data on the efficacy of ICIs in R/R PCNSL has been de-
rived from case series and retrospective studies, as so far only 
one trial (NCT02857426) reported outcomes of single-agent 
nivolumab (anti-PD-1 monoclonal antibody) in R/R PCNSL 
and primary testicular lymphoma, with an ORR of 6.4% [63].

Nayak et al reported a series of four patients with R/R PC-
NSL and one patient with CNS relapse of primary testicular 
lymphoma, all of whom received treatment with single agent 
nivolumab. Four out of the five patients achieved CR and one 
patient achieved a partial response (PR). Three out of the five 
patients remained progression-free at 13 - 17 months [64]. 
Gavrilenko et al reported a case series of nivolumab treatment 
of eight patients with PCNSL and one patient with primary 
testicular lymphoma with CNS involvement; two of the pa-
tients were previously untreated. At a median follow-up of 18 
months, seven patients (78%) demonstrated an objective re-
sponse, with three (33%) achieving CR [65].

Zhang et al reported preliminary results of a phase 2 study 
of orelabrutinib and sintilimab, a new generation anti-PD-1 
monoclonal antibody. Thirteen patients were enrolled, with 10 
having completed all prescribed treatment cycles while three 
had to discontinue due to disease progression. Four patients 
achieved CR, one CRu, three PR, and the estimated median 
1-year PFS rate was 67.7% [43] (Tables 1 and 2). Other ICI-
based strategies are under investigation, including GNC-038, 
a tetra-specific T-cell engager targeting CD3xCD19x4-1BBx-
PD-L1, currently being studied in a phase 1 trial in patients 
with R/R PCNSL and secondary CNS lymphoma (Table 3).

Chimeric antigen receptor (CAR) T-cell therapy

CARs are engineered synthetic receptors expressed on au-
tologous lymphocytes, enabling them to recognize and elimi-Ph
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nate cells that express a target antigen [66]. A CAR molecule is 
composed of the variable region of a high-affinity monoclonal 
antibody, which is connected to the intracellular signaling do-
main of a T-cell receptor (TCR) complex. This structure ena-
bles T-cell-mediated cytotoxicity that functions independently 
of MHC expression [67]. The approval of the anti-CD19 agent 
tisagenlecleucel (tisa-cel) by the US Food and Drug Administra-
tion (FDA) in 2017 for pediatric and young adult patients with 
R/R B-cell acute lymphoblastic leukemia (ALL) [68] marked 
a breakthrough in the treatment of hematologic malignancies. 
The FDA has since approved three anti-CD19 CAR T-cell thera-
pies, axicabtagene ciloleucel (axi-cel), lisocabtagene maraleucel 
(liso-cel) and tisa-cel, for the treatment of R/R DLBCL [69-71].

The capacity of CAR T-cells to access the CNS was first 
observed in a clinical study of this therapy administered to 
pediatric patients diagnosed with R/R ALL. CAR T-cells dem-
onstrated the ability to infiltrate and expand within the CNS. 
At the time of cell infusion, two patients presented with CNS 
leukemia which resolved following the detection of anti-CD19 
CAR T-cells in the CSF [72].

Patients with CNS involvement of DLBCL were mostly 
excluded from prospective trials of anti-CD19 CAR T-cell 
therapy due to the concern for an increased risk of neurotoxic-
ity, particularly immune-effector cell-associated neurotoxicity 
syndrome (ICANS), a known adverse effect associated with 
CAR T-cell therapy. Among the three pivotal anti-CD19 CAR 
T-cell trials for DLBCL, only one permitted the enrollment of 
patients with secondary CNS involvement of DLBCL and none 
of these trials were designed to prospectively investigate these 
agents in PCNSL. In contrast to the ZUMA-1 trial of axi-cel 
[73] and JULIET trial of tisa-cel [74], the TRANSCEND NHL 
001 trial of liso-cel permitted the inclusion of patients with CNS 
involvement of systemic DLBCL. Among the 344 enrolled sub-
jects in the TRANSCEND NHL 001 trial, seven patients had 
secondary CNS involvement. Two of the seven treated patients 
experienced neurological events, both classified as grade 3. Six 
patients had evaluable disease, three of whom achieved CR [70].

Most of the current body of evidence regarding the safety 
and efficacy of CAR T-cell therapy in PCNSL is derived from 
retrospective studies and small prospective trials. Although 

Table 3.  Ongoing Clinical Trials of Targeted Agents for PCNSL

Agents Clinical trials Phase Estimated enrollment Lymphoma
T-cell redirecting antibody
    CD3×CD19×4-1BB×PD-L1 NCT05485753 1b/2 33 R/R PCNSL, R/R SCNSL
BTKi and BTKi-based combinations
    Acalabrutinib NCT04548648 2 16 R/R PCNSL, R/R SCNSL
    Tirabrutinib NCT04947319 2 112 R/R PCNSL
    Zanabrutinib + rituximab + lenalidomide;  
    zanabrutinib or lenalidomide maintenance

NCT04938297 2 100 Untreateda and R/R 
PCNSL, R/R SCNSL

ICIs
    Camrelizumab (anti-PD-1) NCT04070040 2 21 R/R PCNSL
ICI + BTKi +/- anti-CD20
    Sintilimab (anti-PD-1) + orelabrutinib NCT04961515 1b/2 48 R/R PCNSL
    Durvalumab + acalabrutinib + rituximab NCT04688151 1 22 R/R PCNSL
    Pembrolizumab + ibrutinib + rituximab NCT04421560 1b/2 37 R/R PCNSL
IMiD-based combinations
    Tafasitamab (Fc-modified anti-CD19  
    monoclonal antibody) + lenalidomide

NCT05351593 1/2 35 R/R PCNSL, R/R SCNSL

    Poseltinib (BTKi)+ rituximab + lenalidomide NCT06737250 2 33 R/R PCNSL
Anti-CD19 antibody drug conjugate (ADC)
    Loncastuximab tesirineb + rituximab NCT06607549 1 12 R/R PCNSL, R/R SCNSL
IRAK4 inhibitor
    Emavusertib NCT03328078 1/2 152 R/R PCNSL
PI3K inhibitor
    Paxalisib NCT04906096 2 25 R/R PCNSL
BTK degrader
    NX-2127 NCT04830137 1 248 R/R PCNSL

a65 years or older, unable to tolerate frontline treatment. bAnti-CD19 antibody conjugated to the cytotoxic pyrrolobenzodiazepine dimer SG3199. 
BTKi: Bruton’s tyrosine kinase inhibitor; ICIs: immune checkpoint inhibitors; IMiDs: immunomodulatory drugs; PCNSL: primary central nervous sys-
tem lymphoma; R/R: relapsed or refractory; SCNSL: secondary central nervous system lymphoma
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data are limited, patients with heavily pretreated PCNSL ex-
hibit clinically significant responses to anti-CD19 CAR T 
cells. Frigault et al reported outcomes of a phase 1/2 trial of 
tisa-cel in 12 patients with relapsed PCNSL. The ORR was 
58% (7/12 patients), with a CR rate of 50% (6/12). After a me-
dian follow-up period of 12 months, three patients remained in 
sustained remission. Five out of the 12 patients (41.6%) had 
low-grade ICANS, and only one patient experienced grade 3 
ICANS [44] (Tables 1 and 2).

The French LOC network reported retrospective findings 
of a cohort of patients with R/R PCNSL treated with a single 
infusion of either axi-cel or tisa-cel. A total of nine patients 
were treated with CAR T cells (axi-cel = 2, tisa-cel = 7). Eight 
patients had brain parenchymal involvement, and one patient 
had isolated CSF disease. The best response to CAR T cells 
was CR in 5/9 (axi-cel = 2, tisa-cel = 3) and PR in 1/9 patients 
(tisa-cel). The 6-month PFS and OS rates were 44% and 89%, 
respectively. Among responders, the median PFS was 210 
days. Seven patients experienced cytokine release syndrome 
(CRS), the maximum being grade 3 after tisa-cel. ICANS of 
any grade was observed in five patients, including one instance 
of grade 3 following tisa-cel administration and one instance 
of grade 4 following axi-cel administration [75].

The LOC network reported real-world data for 25 patients 
with PCNSL who had received anti-CD19 CAR T cells (tisa-
cel = 16, axi-cel = 9). The best response was CR in 16 patients 
(64%) and PR in four patients (16%). One year following leuka-
pheresis, the PFS rate was 43%, while the relapse-free survival 
(RFS) rate was 79% for patients who achieved CR or PR. The 
overall median OS was 21 months. Three patients experienced 
grade 4 neurotoxicity, with neurological deterioration persist-
ing for more than 3 months. Notably, there was one fatal case 
of neurotoxicity involving a 74-year-old woman who was in 
CR 4 months following tisa-cel infusion. Among the other two 
patients with prolonged neurotoxic effects, one fully recovered 
6 months after CAR T-cell infusion, while the other continued 
to undergo neurological recovery 9 months post-infusion [76]. 
While this report highlights the potential risks associated with 
the use of anti-CD19 CAR T cells in PCNSL, the majority of 
documented patient outcomes suggest that the toxicity profiles 
of these therapies are comparable to those observed in clinical 
trials of these agents for systemic DLBCL [77]. Ultimately, 
prospective clinical trials are essential to evaluate the safety 
and efficacy of anti-CD19 CAR T cells in PCNSL.

Conclusion and Future Directions

The treatment paradigm of PCNSL is at an inflection point. 
HD-MTX continues to be the cornerstone of initial treatment, 
but its use is fraught with difficulties, primarily because of its 
substantial systemic toxicity, which poses a considerable risk to 
patients with compromised organ function. This is particularly 
problematic as PCNSL predominantly affects older adults who 
are already in the most medically fragile stages of their lives. 
Despite undergoing treatment, a substantial proportion of pa-
tients still face the challenge of disease recurrence, and there is 
an absence of established therapies for relapsed disease. Despite 

these limitations, improved understanding of the genetic and 
molecular foundations of PCNSL provides opportunity to inves-
tigate rationally designed targeted therapies for PCNSL, with 
the goal of moving them to the upfront setting, perhaps eventu-
ally obviating the need for HD-MTX chemotherapy.

The most pressing need in identifying effective novel 
agents for PCNSL is in determining which formulations and 
dosages can successfully traverse the BBB. It is also impera-
tive to study these agents in combinations, as a synergistic 
approach is essential for targeting the biological pathways of 
PCNSL, thereby optimizing clinical outcomes and achieving 
sustained responses. Furthermore, given the disease’s limited 
treatment options and suboptimal outcomes, it is important to 
explore these agents as part of the initial treatment strategy 
of PCNSL, rather than limiting their evaluation to relapsed 
cases. Clinical trials utilizing window designs may identify 
which patients derive the greatest benefit from combination 
targeted agents. This approach enables non-responders to tran-
sition to established treatments incorporating HD-MTX, while 
responders can continue with the investigational treatment be-
fore proceeding to consolidation.

In the context of consolidation in PCNSL, a pivotal ques-
tion focuses on discerning which patients are most likely to 
derive substantial benefit from consolidation and identifying 
those who should instead be closely monitored for potential re-
currence. Circulating tumor DNA (ctDNA) has emerged as a 
promising biomarker for detecting residual disease in systemic 
DLBCL [78]. ctDNA, particularly when sourced from the CSF, 
is under investigation as a means to improve risk and response 
evaluation in PCNSL, potentially having a role in informing 
decisions regarding the necessity of consolidation therapy [79].

While CAR T cells have demonstrated clinical efficacy in 
PCNSL, there is a need for prospective clinical trials to com-
prehensively assess the therapeutic potential of this strategy 
in PCNSL. The toxicity profiles of CAR T cells in PCNSL, as 
observed thus far, align closely with those reported in systemic 
DLBCL. Furthermore, the use of CAR T cells in PCNSL war-
rants consideration of their potential as a consolidation thera-
py, particularly in comparison to ASCT.

Novel agents that are currently available for systemic 
DLBCL, but not yet explored in PCNSL, warrant further in-
vestigation. Since a significant portion of PCNSL expresses 
CD79b, the anti-CD79b antibody drug conjugate, polatuzum-
ab vedotin, may have an application in the treatment of PC-
NSL. The primary challenge of utilizing this agent, however, 
would be the limitation posed by this large protein complex 
to be able to penetrate the BBB. Bispecific T-cell engagers 
(BiTEs) represent an innovative class of T-cell redirecting 
antibodies that concurrently bind to tumor cell surface anti-
gens and immune effector cells. Epcoritamab and glofitamab 
have demonstrated clinically significant ORR and CR rates 
in patients with R/R DLBCL [80, 81] and have received FDA 
approval for the treatment of R/R systemic DLBCL. The 
study of the safety and efficacy of BiTEs in PCNSL warrants 
further investigation in clinical trials.

The prevalence of PCNSL among older adults, who often 
demonstrate reduced medical fitness, sometimes impedes their 
participation in clinical trials. This exclusion is frequently at-
tributed to their inability to satisfy the standard inclusion cri-
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teria established by trial investigators, criteria that have his-
torically excluded patients with greater frailty. This highlights 
the necessity to reevaluate our criteria for acceptable medical 
fitness in a context-sensitive manner and to introduce more ap-
propriate flexibility in trial enrollment criteria. Such flexibility 
should aim to accurately reflect a real-world patient demo-
graphic while ensuring the safe inclusion of patients with rea-
sonable medical needs. This approach could expand the range 
of treatment options available for PCNSL within clinical trials 
and influence standard care practices.
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